1. 数据分析网首页
  2. 软件工具
  3. R语言

用R语言进行数据分析:获取和存储数据

r-yuyan

① 如果只有很少的数据量,你可以直接用变量赋值输入数据。若要用交互方式则可以使用readline()函数输入单个数据,但要注意其默认输入格为字符型。scan()函数中如果不加参数则也可以用来手动输入数据。如果加上文件名则是从文件中读取数据。

② 读取表格文件
读取本地表格文件的主要函数是read.table(),其中的file参数设定了文件路径,注意路径中斜杠的正确用法(如”C:/data/sample.txt”),header参数设定是否带有表头。sep参数设定了列之间的间隔方式。该函数读取数据后将存为data.frame格式,而且所有的字符将被转为因子格式,如果你不想这么做需要记得将参数stringsAsFactors设为FALSE。与之类似的函数是read.csv()专门用来读取csv格式。
如果是想抓去网页上的某个表格,那么可以使用XML包中的readHTMLTable()函数。例如我们想获得google统计的访问最多的1000名网站数据,则可以象下面这样做。关于这个函数可以参考这篇博文。
url <- ‘http://www.google.com/adplanner/static/top1000/’
data <- readHTMLTable(url)
names(data)
head(data[[2]])
③ 读取文本文件
有时候需要读取的数据存放在非结构化的文本文件中,例如电子邮件数据或微博数据。这种情况下只能依靠readLines()函数,将文档转为以行为单位存放的list格式。例如我们希望读取wikipedia的主页html文件的前十行。
data <- readLines('http://en.wikipedia.org/wiki/Main_Page',n=10)
另外,scan()也有丰富的参数用来读取非结构化文档。

④ 批量读取本地文件
在批量读取文档时一般先将其存放在某一个目录下。先用dir()函数获取目录中的文件名,然后用paste()将路径合成,最后用循环或向量化方法处理文档。例如:
doc.names <- dir("path")
doc.path <- sapply(doc.names,function(names) paste(path,names,sep='/'))
doc <- sapply(doc.path, function(doc) readLines(doc))

2.2、数据的存储
创建数据框d

>d <- data.frame(obs = c(1, 2, 3), treat = c("A", "B", "A"), weight = c(2.3, NA, 9))

① 保存为简单文本

>write.table(d, file = "c:/data/foo.txt", row.names = F, quote = F) # 空格分隔

>write.table(d, file = "c:/data/foo.txt", row.names = F, quote = F, sep="t") # tab 分隔的文件

② 保存为逗号分割文本

>write.csv(d, file = "c:/data/foo.csv", row.names = F, quote = F)

③ 保存为R格式文件

>save(d, file = "c:/data/foo.Rdata")

④ 保存工作空间镜像

>save.image( ) = save(list =ls(all=TRUE), file=".RData")

本文采用「CC BY-SA 4.0 CN」协议转载自互联网、仅供学习交流,内容版权归原作者所有,如涉作品、版权和其他问题请给「我们」留言处理。

发表评论

登录后才能评论

联系我们

如有建议:>>给我留言

QR code