逻辑回归

18篇文章
日前,一位署名为“傲海”的阿里云工程师在云栖社区发布了一篇分析北京雾霾成因的文章。作者通过机器学习算法分析发现,北京重度雾霾天的出现同大气中二氧化氮的含量存在强相关性。
机器学习中存在各种不同的分类模型,如逻辑回归、决策树、朴素贝叶斯和支持向量机等。评估不同分类模型性能的方法是相通的。
逻辑回归,也称LogisticRegression,主要区别于一般的线性回归模型。
每个数据科学家每天都要处理成吨的数据,而他们60%~70%的时间都在进行数据清洗和数据格式调整,将原始数据转变为可以用机器学习所识别的形式。
这一章,我们讨论广义线性回归模型的具体形式的另一种形式,逻辑回归(logistic regression)。
机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。本文主要回顾下几个常用算法的适应场景及其优缺点!(…
如何使用逻辑回归模型预测股票涨跌
在机器学习领域,每个给定的建模问题都存在几十种解法,本文作者认为,模型算法的假设并不一定适用于手头的数据;在追求模型最佳性能时,重要的是选择适合数据集(尤其是“大数据”)的模型算法
本篇文章我们介绍一种对分类模型进行效果评估的方法:混淆矩阵(Confusion matrix)。
逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。
摘要:机器学习算法都是一个个复杂的体系,需要通过研究来理解。学习算法的静态描述是一个好的开始,但是这并不足以使我们理解算法的行为,我们需要在动态中来理解算法。 机器学习算法的运行实验,会使你对于不同类…
摘要:抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一…

关注我们的公众号

微信公众号