推荐系统

  • 大数据是许多公司时髦的外衣却是Netflix的骨髓

    Netflix成立于1997年,最早是一家在线DVD租赁公司,以选片方便、免费递送著称。而今Netflix已积累了价值122亿美元的视频内容,供付费用户通过多种终端设备在线观看。 到2009年,Netflix订户达到1000万、可以提供多达10万部DVD电影。2011年,Netflix网络电影销量占据美国用户在线电影总销量的45%。2015年末,Netfli…

    2016-02-21
  • 主动或被动:搜索引擎和推荐系统的选择

    摘要:从信息获取的角度来看,搜索和推荐是用户获取信息的两种主要手段。无论在互联网上,还是在线下的场景里,搜索和推荐这两种方式都大量并存,那么推荐系统和搜索引擎这两个系统到底有什么关系区别和相似的地方有哪些本文作者有幸同时具有搜索引擎和推荐系统一线的技术产品开发经验,结合自己的实践经验来为大家阐述两者之间的关系、分享自己的体会。 图1:搜索引擎和推荐系统是获取…

    2016-02-20
  • 达观数据于敬:个性化推荐系统实践

    摘要:在DT(data technology)时代,网上购物、观看视频、聆听音乐、阅读新闻等各个领域无不充斥着各种推荐,个性化推荐已经完全融入人们的日常生活当中。个性化推荐根据用户的历史行为数据进行深层兴趣点挖掘,将用户最感兴趣的物品推荐给用户,从而做到千人千面,不仅满足了用户本质的信息诉求,也最大化了企业的自身利益,所以个性化推荐蕴含着无限商机。 号称“推…

    2016-02-04
  • Apache Hadoop准实时数据处理的架构模式

    评估好哪一种流架构模式最适合你的案例,是成功生产开发的先决条件。 Apache Hadoop 生态系统已成为企业实时地处理和挖掘大数据的首选。 Apache的Kafka, Flume, Spark, Storm, Samza等技术在不断地推进新的可能。人们很容易泛化大规模实时数据案例,但其实他们可以细分为几种架构模式,Apache系统里的不同组件适合于不同的…

    2016-01-24
  • 小团队如何撬动大数据?当当推荐团队的机器学习实践

    当当个性化推荐开发经理张相於深度分享当当推荐团队的机器学习实践经验。本次分享更侧重“面向过程”——在构建系统时的一些实践,一些坑,以及如何从坑里爬出来,以及“小团队”。

    2015-10-16
  • 面向程序员的数据挖掘指南2:推荐系统入门?

    你喜欢的东西我也喜欢 我们将从推荐系统开始,开启数据挖掘之旅。推荐系统无处不在,如亚马逊网站的“看过这件商品的顾客还购买过”板块: last.fm上对音乐和演唱会的推荐(相似歌手): 在亚马逊的例子里,它用了两个元素来进行推荐:一是我浏览了里维斯翻译的《法华经》一书;二是其他浏览过该书的顾客还浏览过的译作。 本章我们讲述的推荐方法称为协同过滤。顾名思义,这个…

    2015-05-02
  • 美团的推荐算法实践

    前言 推荐系统并不是新鲜的事物,在很久之前就存在,但是推荐系统真正进入人们的视野,并且作为一个重要的模块存在于各个互联网公司,还是近几年的事情。 随着互联网的深入发展,越来越多的信息在互联网上传播,产生了严重的信息过载。如果不采用一定的手段,用户很难从如此多的信息流中找到对自己有价值的信息。 解决信息过载有几种手段:一种是搜索,当用户有了明确的信息需求意图后…

    2015-03-03
  • 常用的推荐系统算法以及优点缺点对比

    在推荐系统简介中,我们给出了推荐系统的一般框架。很明显,推荐方法是整个推荐系统中最核心、最关键的部分,很大程度上决定了推荐系统性能的优劣。目前,主要的推荐方法包括:基于内容推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐和组合推荐。

    2014-01-01

联系我们

如有建议:>>给我留言

QR code